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1. I N T R O D U C T I O N  

In a recent paper (1) (hereafter referred to as I), R6sibois and Lebowitz have 
proposed an approximate but explicit kinetic equation to describe the time 
evolution of the one-particle self-distribution function 2 f~,~(xl; t) in a hard- 
sphere fluid close to equilibrium. 

This equation reads 
[ ,  t 

atf~,l(xl; t) = O~if~,~(i) + J0 Gs,~(t')fi, l(t - t') dt' (1) 

Here, C~1 is the linearized self-Enskog operator, defined in I [Eqs. (50) and 
(51)], and the non-Markovian kernel Gs, l(t) takes the form 

G~,l(t) = ~1.~ exp[((~l  + ~2E)t]~,l  (2) 

where (~fi is the linearized Enskog operator for an arbitrary fluid particle 
i r 1 [see I, Eqs. (57)-(59)], 0 while the operators ~1,2 and ~cf2,1 have been 
explicitly defined in Eqs. (45) and (48) of I, respectively. 

The rationale underlying the approximate kinetic equation (1) has been 
discussed in detail in I and will not be repeated here. Let us simply recall a 
few exact properties which are satisfied by Eq. (1). 

(i) At t = 0, it gives the exact two first derivatives off~,~(x~; t). 
(ii) At low density, it correctly gives, beyond the Boltzmann contribution, 

those terms of the Choh-Uhlenbeck triple collision operator that describe 
one, two, and three binary collisions. These terms are known to be largely 
dominant in the calculation of transport coefficients. (2) 

(iii) It also leads to the correct nonanalytic contribution (ccp In p) to 
the density expansion of the self-diffusion coefficient. (a 

(iv) In the limit of long times, it leads to the expected t-3J2 long-time 
tail for the velocity autocorrelation function, (4) except that the numerical 
coefficient of the law is exact at low densities only. 

These properties make Eq. (1) a very appealing candidate for an approxi- 
mate description of the dynamic properties of a hard-sphere fluid for all times 
and all densities. 

However, Eq. (1), albeit explicit, is not easy to solve. The main difficulty 
is apparent in Eq. (2), which shows that the non-Markovian kernel Gs,~(t) 
involves the Enskog operators in the argument of an exponential. An exact 
calculation of G,.~(t) thus requires in principle knowledge of the spectral 
properties of the Enskog operators, and these are presently not available; this 

We follow the notation of I. 
a The operator (~  here is the one that comes from the short-time expansion method ~ 

and is slightly different from the original Enskog operator. This difference is carefully 
discussed in Ref. 22. 
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is, however, not an insuperable difficulty if one notices the great similarity 
between the Enskog operators and the corresponding Boltzmann operators, 
C B, to which they reduce in the dilute gas limit: Indeed, after the pioneering 
work of Gross and co-workers, (5~ systematic methods have been developed 
to derive very precise representations (often called kinetic models) of the 
operator e xp [ ~ t ]  with the aim of calculating the Van Hove response function 
in the dilute gas. (6~ An extension of these calculations to the Enskog operator 
has already appeared in the literature. (7~ 

Unfortunately, these calculations involve fairly heavy numerical work 
and their extension to our present problem is worsened by the fact that the 
exponential in (2) is bilinear in the Enskog operators. Hence, before jumping 
into such awkward kinetic model calculations, it is certainly worthwhile to 
investigate whether a rough approximation to (2) would not reproduce the 
main qualitative features of hard-sphere dynamics. The aim of this paper is to 
discuss such a simple model. 

To be specific, we shall be concerned here with the calculation of the 
normalized velocity autocorrelation function 

r(t) = m(vlx(t)vlx(O))/kBT (3) 

which, as shown in I, can be written as 

r( t )  = f dvl v~xf~,z(v~ ; t )  (4) 

wheref~,l(h; t) is the (h-independent) one-particle self-distribution function 
subject to the initial condition 

f~.l(vl ; 0) = mv~q)(vl)/kzT (5) 

Of course, in our approximation, fs,~(vz; t) has to be calculated from (1). We 
have choosen to study the velocity correlation function as a typical example 
of application of the theory because it is rather sensitive to the details of the 
dynamics; moreover, extensive computer data exist for F(t): These will 
provide us with some hint as how to develop approximations and, at the 
same time, they will offer a serious check on the validity of the theory. On 
the contrary, the other physically observable self-correlation function, 
namely the Van Hove function, does not seem as interesting because the use 
of simple sum rules and of the conservation laws already allows us to get a 
very good fit of the experimental results: Such simple arguments are of little 
help in reproducing the features of P(t). 

In Section 2, we first approximately reduce Eq. (1), which is an operator 
equation in velocity space, to an integrodifferential equation in time only for 
the function F(t): 

9tr(t) = -(2/3~-E)r(t) + C(t')r(t - t ' ) t i t '  (6) 
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Here rE is the well-known relaxation time in the Enskog approximation: 

1/r~ = 4~/Trpg~(a+ )a2(kBT/m) 1'2 (7) 

and G(t) depends on time only; for t > 0, the expression for G(t), which is 
displayed in (15), remains formal because it still involves the Enskog opera- 
tors in an exponential, as in (2). After briefly discussing the errors involved in 
going from (1) to (6), we spend some time in discussing the zero-time kernel 
(7(0), which gives us information on the second derivative of I'(t): 

d~r(t) ~=o 4 
dt ~ = 9 @  + 8(0)  (8) 

This quantity G(0), which describes a correlated sequence of two hard-sphere 
collisions, has not, to the best of our knowledge, been calculated before for 
arbitrary density. 

This short-time behavior is, however, of little help when looking at the 
evolution of the system for arbitrary times, and we need some further approxi- 
mation which allows us to get G(t) in compact form for t > 0. This approxi- 
mation is suggested by the observation by Alder and co-workers (8) that the 
main deviations from Enskog behavior come from times which are fairly 
large on the time scale fixed by rE; for such times, we expect the dominant 
contributions to e x p [ ( ~ l  + ~2E)t] in (2) to come from the hydrodynamic 
modes and, roughly speaking, we expect the following replacement to be 
valid: 

exp[(C~l + C2~)t] ~ (1/8~ 3) dk ~ {Iq~k)]O~) 
g = l  

• exp[(A~ ~ + A~,~)t](~k[(U~2~l} (9) 

where l O~ k) (resp. I~,z))  and A~ ~ (resp. A~,~), respectively, represent the 
hydrodynamic (resp. self-diffusion) eigenfunctions and eigenvalues with wave 
number k of the operator C2 E (resp. ~ t). Yet, since we want an expression 
for G(t) valid for atl times, we have to saitably extrapolate (9) for all t and k 
values: this quasihydrodynamic approximation is discussed in Sections 3 and 4. 
Let us immediately stress that, in the present state of the theory, this approxi- 
mation is largely ad hoc and is mostly justified by its success; we hope, 
however, that further work, based on the above-mentioned kinetic model 
methods, will provide stronger support for it. 

This quasihydrodynamic approximation allows us to reduce the kernel 
G(t) to a quadrature over wave numbers, which cannot be evaluated analyti- 
cally. However, in Section 5, we show that this expression is very useful from 
two complementary viewpoints: 
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(i) It allows, for any density, a numerical solution of (6), leading to 
explicit values of F(t) for all times, as well as to values for the diffusion 
coefficient D: 

D = (ksT/m) r( t)  dt (10) 

(ii) It also permits, without any calculations, of a good understanding of 
the general features displayed by these numerical results. In particular, the 
importance of collisional transfer at high densities appears very clearly. 

The comparison of these results with the computer data is very en- 
couraging: The main features of Alder's calculations are qualitatively 
reproduced by the theory, including the remarkable change of sign of the 
deviations from Enskog theory when the highest densities are approached. 
Suggestions for further improvement and relation to other work are also 
presented in Section 5. Finally, some of the calculations are given in the 
appendices. 

2. A P P R O X I M A T E  KINETIC E Q U A T I O N  FOR P(t) A N D  
S H O R T - T I M E  B E H A V I O R  

A major simplification occurs in the calculation of the velocity auto- 
correlation function if we assume that, for all times, the self-distribution 
functionf~,l(vl; t) keeps the same form it has at t = 0 [see (5)]: 

f~,l(vl; t) = c(t)(m/kBT)V~q~(v~) (11) 

Multiplying both sides of this equation by v~x and integrating over vl, we 
readily see that the unknown coefficient c(t) can be identified with r(t) itself: 

e(t) =- P(t) (12) 

and, performing the same operation on Eq. (I), we readily obtain a closed 
equation for I'(t): 

0 f ( t )  = -~Er( t )  + C(t - t ' )P(t ' )dt '  (13) 

where the coefficient vE is given by 

= -(m/kBT) f dr1 VlxC~lVlx~(Vl) (14) l/lg 

while the function G(t) is 

(m/k~T) f dv~ v~xG~,~(t)vlx~o(vz) (15) C(t) 
d 
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In the present problem, we have no rigorous justification of this assump- 
tion; however, for the Enskog equation itself [i.e., when dropping the non- 
Markovian term in (1)], it is known (8'9,13) that this so-called zeroth-order 
Sonine polynomial approximation leads to only a few percent error in the 
computation of transport coefficients and of correlation functions; this is 
much less than the deviations from Enskog predictions which are observed 
in the computer experiments and which, hopefully, will be accounted for by 
the non-Markovian term in Eq. (1); moreover, it would be extremely sur- 
prising if the presence of this latter term would deeply alter the validity of(11). 
Hence, we shall adopt Eq. (14) with no further concern. 

The calculation of the frequency vE is standard (8,9) and will not be 
repeated here; one finds 

v~ = 2/3~'~ (16) 

where the relaxation time ~-~, defined in (7), is the natural time scale of our 
problem. For this reason, it is convenient to work with the following dimen- 
sionless quantities: 

T = t/rE, W(r) = F(7~'E), gO') = ~'E2G(rzE) (17) 

in which case Eq. (13) becomes 

f0 8t?'(r) = -2y(r)  + g(r')~,('c - -c') dr' (18) 

Notice that, in these units, the ratio of the diffusion coefficient D to its Enskog 
approximation DE takes the simple form 

D/DE= 1 / [ 1 - ~ f o ~ g ( , ) d ~ ]  (19) 

Our main problem in this paper will be to obtain a compact expression 
for the kernel g(r). It is convenient to decompose this function into two parts: 

g(~) = g(1)(,) + g(2~0-) (20) 

where, in agreement with (2), (15), and (17) and I (45) and (48), we have 

(m.cE2/kBT) f dr1 dxz Vl,:K12 exp[(C~ + C2E)~-ET] g(1)(~.) 

• pg~(r~, r2)[K~, vM~(v~)~(v~) (21) 
and 

f dv~ dx2 dxa vz~K~2 e x p [ ( ~  + C2E)~'Er] g(2)(T) (m~/k~r) 

• p2{ga(r~, r2, r3) - g2(rl ,  r2)g2(rl, r3)}[K13, vl~] 

• ~(v~)~(~)~(~) (21 ') 
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We have already mentioned in I that some care has to be exercized when 
dealing with the singular operators K~j. This is nicely illustrated in Eq. (21): 
Suppose that we replace there the "Enskog propagator"  exp[(C~ + Cf ) r rE]  
by the "free motion propagator"  exp[-(S8~~ + s176 ' where ~ o  is 
defined by 

:L~ ~ = v,. 8/Or, (22) 

We then have 

K12 e x p [ - ( ~  ~ + ~2~ v~x] -- 0 (23) 

which expresses the geometric fact that two hard spheres cannot collide twice 
in succession. (~~ In order to keep this property explicit in g(~(r), it is con- 
venient to use (22) in order to rewrite g(~(r) as 

g<l)(r) = (mrE2/k~T) f dr1 dx2 Kx2{exp[(C~x + C2E)%r] 

-- exp[-(s162 ~ + ~2~ r2)[K12, vlx] 

• q~(v~)q~(v2) (24) 

We shall wait until the next section before discussing how to approxi- 
mately calculate g(r) for arbitrary r. Here, we shall limit ourselves to looking 
at its zero-time value. From (24), we immediately see that ga~(0) =_ 0 and 
thus we get from Eq. (19)) 

~27(r)  4 
ar 2 ,=0 = 9 + g<2'(0) (25) 

This equation has a very simple interpretation. Indeed, the second derivative 
of  y(r) describes the effect of two successive collisions; the first term on the 
right-hand side of (25) represents the contribution due to an uncorrelated 
sequence of two such collisions (with a small error due to the use of the zeroth- 
order Sonine polynomial approximation) and the second term describes a 
correlated sequence of two collisions between three particles. In order to 
estimate the role of these correlations, we need to evaluate (21') for r = 0. 
Although with the explicit form of K12 given in I (40), this expression looks 
quite involved, it can nevertheless be reduced to the following simple integral: 

g~2~(o) = -g ~lx x e ( x )  ~ 1 (26) 
- i  

In this formula, we have used the abbreviation 

g~(x) = g,(lr~ d = a, ]rla[ = a, r12"r,a = a2x) (27) 
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to denote the triplet correlation function at contact; qb(x) represents the 
function 

with: 

~)(X) = !(4 -- X2)1/2 {i l(-~)[1-}-  ~-] -~ (28) 

2 (  l + x  x ) 
iz(x) - (1 - x2) 1/2 tan-1 (1 - x2) 1/2 tan-1 (1 - x2) 1/2 (29) 

This function is plotted in Fig. 1. Though the proof of (26) involves no more 
than a succession of quadratures, this calculation is long enough to deserve 
some explanations; these are given in Appendix A. 

Since (26) involves the triplet correlation function, it cannot be evaluated 
analytically. Worse than this, even at contact, very few data exist for g, and, 
in most cases, we have to resort to the superposition approximation; then 
(26) reduces to 

~ + 1  

g(m(0)[~uverp = 17r [ d x  x(b(x){g2([2a(x  + 1)] 1/2) - 1} (30) 
d - 1  

In (30), we may use the empirical receipe due to Verlet and Weiss (11) to obtain 
a fairly accurate representation of g> When the density increases, we may, 
however, expect the approximation (30) to be seriously in error. 

In Table I, we present the numerical results based on (30) at a series of 
densities measured by the ratio V/Vo, where V is the volume per hard sphere 
and V0 is this same volume at close packing. Moreover, we also compare this 
approximate value with the one based on (26) for two densities where a good 
Monte Carlo calculation of the triplet correlation function at contact has been 
made(12>: As can be seen, the discrepancy is rather severe. 

We have few other comments to make on the results of this table; indeed, 
without a knowledge of the analyticity properties of y(r) near r = 0, not 
much use can be made of these numerical estimates for guessing the short 
(but finite) time behavior of y(T). At best, we can get some comfort in noticing 
that, compared to the uncorrelated term ~ = 0.4444 .... the contribution from 
the correlated collisions is quite small for all densities (from 2~ to 20070); 
this observation leads to one more argument in favor of the Enskog theory as 
a good first approximation. 

3 

-1 0 1 Fig. l. The function 69(x), Eq. (29). 
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Table I. Values of g(0) at Various Densities 

'Superposition approxi- Monte Carlo calculation 
V[Vo mation [Eq. (30)] of Ref. 12 [Eq. (26)] 

401 

20 0.075 - -  
10 0.069 - -  
7 0.062 - -  
5 0.052 - -  
4 0.0415 - -  
3 0.025 - -  
2.5 0.014 - -  
2 0.009 - -  
1.83 0.012 0.041 
1.69 0.021 0.026 
1.6 0.031 - -  
1.5 0.046 - -  

Finally, prior to our  discussion of  Section 3, in order not  to leave the 
reader with a deceptive impression, we immediately stress that  our poor  
knowledge of  g(0) turns out  to be o f  minor  importance in determining the 
overall deviations o f  ~,(r), for all r, f rom its Enskog value. 

3. T H E  Q U A S I H Y D R O D Y N A M I C  A P P R O X I M A T I O N  

In  order to get an approximate formula  for g(z) for r > 0, it is con- 
venient to express Eqs. (20) and (21) in the Fourier  variable k associated with 
r2 (or r12, by translation invariance). Consider, for example, gin0-);  with 
Eq. (40) o f  I for the collision operator  K12, we have 

g(~)(~-) = (m-c~2a2/kBT) f dv~ dr2 f d2x Vlx(X " Vl2) O(x " Y12) 

x [S~l)(rl, v l ' ;  rl - ax, v2'; ~-) - S~l)(rl, vl;  rl + a• v2; -)] 

where we have put  

S(1)(rl, vi ;  r2, v2; ~) 

= {exp[(C~l + (~ZE)rE~] 

-- e x p [ -  ( ~ o  + s v~ ; r2, v2; 0) 

with 

(31) 

(32) 

Sm(rz ,  vz ;r2,  v2; 0) = pg2(rl, r2)[K12, vlx]~v(vz)~(vz) (33) 
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In the part of (31) corresponding to the first term in the bracket, we change 
the integration variables from vl, v2 to vl', v2' [see (A.3)] and we also use - •  
instead of x in the integral over the angles of collision. We obtain then 

g(1)('O=-(m-~?a2/kBT)f dvl dv~ f d2x Kx(• 2 

x 0(• vl; rl + a• v2; r) (34) 

and, with the help of the Fourier transform, 

v2; ~-) = (1/8~ 3) _f dk exp[-ik-rlz]S(~)(r~, vz; r~, v2; ~-) (35) S~z)-k(Vl ; 

we arrive at 

mrE2a2 1 fdvldv2fdkfd2x g(J)(r) = kBT 8~r a 

x exp[--iak.xl~x(x.v,2)20(• v2; r) (36) 

wi th j  = 1. Here S~)_k(vl ; v2; r) can be written as 

S~*)-k(Vz; v2; r) = {exp[(C~, + C2E)rEr] 

- -  exp[-ik'v~2rrE]}S~)-k(V~; v2; 0) (37) 

because the Enskog operators are diagonal in k-space. Indeed, in (37), we 
have 

C~fk(v~) = ( - i k . v l  + C~)fk(vl) (38) 

where C ~  is k independent [see I (51)] and similarly, from I (57) we get 

C2Ef_k(v2) = (ik.v2 + C'-~)f-k(v2) (39) 
where 

= - i/3p V~(k.v~)~(v~) f c;% a v ~  f~(v~) 

) f f + pa2g~(a + 

+ f~(v3')~(v~')exp(-ik. • - f~(vz)q~(v~) 

- f~(v~)~(v2) exp(ik-• (40) 

Here V~ is the Fourier transform of the "potential"  V(r) defined in I (59): 

- f lV~ = aapC(ka) + ~raapg~(a+)fi(ka) (41) 

In this formula, ~(y) is the Fourier transform of the direct correlation function 
C(r): 

C(y) = ] da(r/a) exp[iy.r/a] C(r) (42) 
d 
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and p(y) is given by 
t~(Y) = 3(sin y - y cos y)/y3 (43) 

A simple calculation shows that Eq. (36) also holds for g(2)(~.) provided 
we now p u t j  = 2 and use the definitions [see also (A.2)] 

Sk (2) ~v �9 v2 ; ~) = exp[(C~l + C2E)rE~-IS~2.Lk(vl ; v2 ; 0) (44) , - k \  1 ~  

and 

S(2) ( v . r ) = p 2 a 2  ( f , , 2 , k,-k~ 1, V2; dr3 d 2• "x (• "v13) 0(x "v~3) 

x f dr12 exp[-ik.r12]{g3(rz, r2, rl  - aW) 

- g2(r~, r2) g2(a +)}q~(va)q)(v2)q)(v3) (45) 

Since the spectrum of the Enskog operator is not known, it is clear that 
the calculation of (37) and (44) cannot be made exact. In order to proceed 
further, we shall limit ourselves here to a very rough approximation. This is 
easier to discuss if we first introduce some coavenient notation: A function 
f(vl)  is considered as the velocity space representation of an abstract vector 

[A>: 
f ( v 0  = <vllA> (46) 

in a Hilbert space, where the scalar product is defined by 

<gz[f~> = f dvz ~o(v~)- ~g*(vl)f(vO (47) 

Notice that we have put a subscript 1 in bras and kets in order to insist that 
they refer to particle 1. We also consider a complete basis In1> in this space 
(for example, the Sonine polynomials) which contains, in particular, the 
following five orthonormal vectors: 

<v1111> = 9(vl) 

_ _  V l , i  
<v1[i1> (kBT/rn)l/2 q)(v~), i = x, y, z =- 2, 3, 4 

\2kBT (48) 

These five vectors will be generically denoted by [~> (~ E 1, 2,..., 5). 
In order to treat (37), we use the identity 

exp[(Cs + ~2E).Er] 

= E [n~', m2'><nl', m2'[ exp[(C1 ~' + 82E)~-~-E]ln1, m2><nl, m2[ (49) 
~ , t t t ,  
it" j rtU 

where [n~, m2> = In~ >| [m2>, etc., and we use the empirical observation 
made by Alder and co-workers (a) that the main deviations from the Enskog 
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theory come for times ~- which are long compared to the relaxation time 
(r > 1). For such times, we find that: 

(i) If the wave number k [see, for example, (38)] is small, all contribu- 
tions to (49) have decayed essentially to zero except those corresponding to 
nl, ml' - 1 and to m~, ms' ~ (~). The special property of these latter terms 
stems from the fact that they are exactly stationary when k = 0, as a well- 
known consequence of the conservation properties of the Enskog operators. (9~ 

(ii) If the wave number k is large, then all contributions to (49) have 
decayed almost to zero, because of the free motion term -ik.v~2 [see (38)]. 

These properties suggest strongly that we keep only the terms nl, n~' = 1 
and ml,  ml' ~ (~) in (49). Of course, a more fundamental analysis (based on 
kinetic models) is required to justify this assumption but we shall not do this 
here: We shall simply a posteriori verify that it leads to reasonable results. 

Inserting this approximation into (37) leads to us: 

S(1~ ,',, �9 r) s <vl v2111, c@['r l(ka; r ) ~ , ~ , ( - k a ;  ~-) k , - k \ ~ l ~  V 2 ;  = ~ , , 
cr t 

_ ~/:~o~ ~k-" ~-)%~~ k a ; ,  ~-)](11, a2' ~,k,c~l~- ~/\ (50)  

where 

"r ~') = (111 exp[C~I~'Erl[ll) (51) 

represents the "density-density" propagator of the tagged particle in the 
Enskog approximation; similarly, 

~ , ~ , ( - k a ;  r) = @21 exp[C2E~'E~']]~2'), ~, d ,e  1, 2,..., 5 (52) 

denotes the (a, d)  component of the "propagator matrix" for a fluid particle; 
and 

r o_. a. r) = (11[ exp[--ik 'vlrzE]jl l)  (53) s ; l , l k  n 

and 

T':(~ " , ~ , ~ , ,  , r) = @21 exp[ik'v2"r~'~]la2') (54) 

describe the corresponding free-particle propagators. A similar approximate 
formula of course holds for S~2]_k. 

Inserting (50) into (36), we get an expression for g(l~(r) which, though 
suitable for numerical calculations, is too involved for good comprehension, 
because of the large number of terms. A further simplification can be achieved 
if we notice that, at k = 0, the fluid propagator matrix takes the simple form 

~(o; ~) ~ (55) , =-- ~=,~ 
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Thus, if the small k components dominate in (36), we expect that the approxi- 
mation 

a(ka; ~-) "~ ~ ( k a ;  ~.~Kr (56) 
, - -  ) '  cc,B 

will be satisfactory. In the same spirit, we decompose the velocity v2 into its 
transverse and longitudinal parts: 

v2 = v~l + v• ( 5 7 )  

with 

VII "~ (lk'V2)lk, V• = V 2 -- Vii (58) 

where lk is the unit vector along k, and we use the approximation 

3~'~,,(-ka; ~-) = (1 - 1L)~,,(alkl;  ~) 

+ l~ , , ,~ . , (a lk l  ; *), i - -  X, y ,  z - -  2 ,  3, 4 ( 5 9 )  

where ~/P~,z and ~, l I ,  respectively, denote the Enskog propagators for the 
transverse and longitudinal velocity fields: 

~/'~,z(ak; ~-) = <v• exp[Ez~-~r][vz>/<v•177 (60) 

~,Tl(ak; ~') = (vii [ exp[Cz~-zx][vll>/(vltlVll> (61) 

Again, (59) becomes rigorous in the k --~ 0 limit. 
We get 

s~) ~v "v~; ~) = ~ <v~ v~ll~, ~>[G:~,~0,a; ~) k ,  - k \  1 ~ 

c( 

• ~F~,~(- ka; ~) - ~//:~o)~:~,~=r~ a ., ~)~<~ k a ; ,  ~-)ff (62) 

and a similar formula for S~~ k. 
The replacement of (37) by (62) forms our quasihydrodynamic approxi- 

mation; the term "hydrodynamic"  terns from the fact that we have retained 
those contributions that become dominant for small k and large ~-; however, 
since we do not want to introduce any artificial cutoff in the theory, we prefer 
to speak of quasihydrodynamic approximation to stress the fact that (62) 
is used for all k and all ~-, the rapid decay (to be verified later on) of this 
quantity for large k providing a natural cutoff. 

To get an explicit expression for g"~(~-) is now straightforward: We 
introduce (62) into (36) and we use simple symmetry properties to eliminate 
most terms in the sum over ~ in (62). We arrive at 

g~>(~.) mpa~g2(a+)'r~ 2 f = kBT(8~r3 ) dk m~(k) 2 

• [~:z,~([kla; ~ - ) .~ ( -ka ;  ~-) - Y/~~ ~-)~//~(~~ ~-)] (63) 
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and 

mp2a4.rE 2 
g(q~)(~-) - knr(STr3 ) f ak n~(k)ex(k)~//~:~,z(lk]a; ~-)~,z([k[a; r) (64) 

(the subscript qh is used for "quasihydrodynamic"), where we have intro- 
duced the following quantities: 

m.x(k) = ( dv~ dv. ( d ' •  exp[-ia•215 
d d 

and 

n~(k) = f dvl dv. f d2• exp[-ia•215215 

(65) 

(66) 

and 

g~)(~) = (A/18~r3z2) y4 dy ~(y)p(y)~;z,z(y; r)'/f~.l(y; ~) (69') 

/. 
/~x(k) = ) avl av. av. j a.. Kx(X " VI3) 20(X ~ VI S)~D(Vl)~O(IJ2)~D(VS) 

x .( dr12 exp[-ik'r12]{g3(rl, r2, rl - a• - g~(rl, r~)g2(a+)} 

(67) 

The calculation of mx,~ and nx involves integrals well known in kinetic 
theory ~9); we merely quote the results in Appendix B. The evaluation of ~,, is 
more delicate because it involves the triplet correlation function ga. However, 
in Appendix B, we show that ~. can be exactly expressed in terms of the pair 
correlation function g2 only. 

Using these results as well as the decomposition (59), the angular inte- 
grations in (63) and (64) are easily performed, and, in terms of the reduced 
wave number y = ka, we finally arrive at the fairly compact expression 

gqh(r) = g(~k'(r) + g(q~(r) (68) 

with 

g~)(,) = (16A/277r a/~) y~" dy {~o• r) 

• ~ . ,  (y; ~) _ ~(O)s;~.~.~,~,,. ,)~12(y;. -)1 

+ �89 r)~,n(Y; z) - ~(o)~;~,~w,,r,,. z)~jO)(y; z)]} (69) 
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In these expressions, we have introduced the dimensionless mean free path, 

A = 1/4~/-s (70) 

and the following dimensionless functions [see also (43)]: 

q~.(y) = 9(6i22 + 5i32 - 8i j~) /35  (71) 

~I{(Y) = 9(2i22 + 11i32 + 2i~ia)/35 (72) 

T (y )  = [6(y) /g2(a+)] + 4rrp(y) (73) 

where 

i2(y) = sin y / y ;  ia(y) = [2y c o s y  - (y2 __ 2) sin y]/ya (74) 

and G(y) is the (dimensionless) Fourier transform of the equilibrium pair 
correlation function: 

G(y) = I~'(y)/[1 - (a3p)C(y)] (75) 

Notice that the functions 5%, q~II, and # tend to 1 when y goes to zero, while ~b 
tends to a finite constant; moreover, these functions tend to zero for y >> 1. 
These two features call for the following remarks. 

(i) For ~" finite, we see that the integrand ofg~(~  -) at small wave number 
behaves like y2 and is thus larger than the corresponding contribution to 
g~)(r) (a:y4). However, we see from (68) that g~(T) starts as 0 at ~- = 0; 
moreover, the numerical factors weighting .(1~ and .~2~ ~q~ sqh are different. Hence, 
even though we are working in a quasihydrodynamic approximation, it is 
hard to tell which term will dominate in the intermediate time regime 
(r _~ 3-10) and we have no good a priori reason to neglect ,,~2~ 6qh as compared 
to .(1) 

S q h  �9 

(ii) Similarly, we do not feel it legitimate to take the limiting values at 
y = 0 for the functions ~ ,  ~lJ, P, and r in the integrands of (68) and (69), 
even though we expect the dominant  contributions to come from " sma l l "  y. 
Indeed, we have to give up our naive ideas taken from the kinetic theory of 
dilute gases: There, hydrodynamic behavior is known to hold for yA ~ 1 
and, because A >> 1, this implies y << 1. However, in a dense fluid, the Enskog 
mean free path is exceedingly small (for example, A ~_ �89 for V/Vo ~_ 1.6) 
and hydrodynamic behavior may be expected to hold at least up to y _~ O(1), 
in which case the y dependence of the functions cp~, ~%, r and p may not be 
neglected; this point is further discussed in Section 4. 

Before closing this section, let us investigate the meaning of our quasi- 
hydrodynamic approximation at t = 0. Of course, this approximation was 
not devised to correctly describe this zero-time behavior, but it is nevertheless 
important to verify that, in this limit, it does not lead to absurd results. 
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With the proper ty  

~/~,,~(0) = ~//~!~ = 1 (76) 

we readily see that  the exact property g(l~(0) = 0 is maintained:  

g(q~(0) = 0 (77) 

Moreover,  tedious but straightforward manipulations lead to 

g(q~(0) = 1 ~[g2(r) - g 2 ( a + ) O ( r  - a)] r (78) 
12a3  p ( g 2 ( a  + ))~ ~r  = ~ , 

It is readily verified, with the help o f  the B B G K Y  hierarchy, that  this same 
result would come out of  the exact result (26) if we replace there the function 
�9 (x) by the approximation ~bqh(X ) = 1. In other words, (78) can be rewritten 
formally as 

= rr d x  ~ [ ~  1 (79) g~(o) -~ 

Inspection of  Fig. 1 indicates that, loosely speaking, Oq~(x) = 1 is the most  
reasonable constant  value to approximate the true q~(x). Moreover,  the x 
dependence of  q) expresses the angular dependence of  the various correlated 
sequences o f  two collisions and we may expect that  this angular dependence 
is rapidly damped after a few further collisions: Hence Eq. (79) appears as 
very reasonable. 

In Table II, we give the values o f  g(q]~(0), on the basis of  the Verlet-Weiss 
rule ~1~ (which is o f  course not  very precise for the derivative .of the pair 
correlation at contact), and of  the Bel lemans-Orban calculations/~9~ at 

Table II. Values of gqh(0) at Various Densities 

Eq. (75) and Verlet- Eq. (76) and Bellemans- 
V/Vo Weiss rule Orban calculation 

20 0.189 - -  
10 0.182 - -  
7 0.177 - -  
5 0.170 - -  
4 0.165 - -  
3 0.157 - -  
2.5 0.150 - -  
2 0.140 - -  
1.83 0.135 0.154 
1.69 0.129 0.143 
1.6 0.126 - -  
1.5 0.120 - -  
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various densities. The characteristic feature of these data is that g~(0) is 
much larger, at all densities, than the exact g(2~(0). Nevertheless, it is this value 
which governs the long-time value of g(2~(~.), though it leads of course to an 
incorrect second derivative of ~ at �9 = 0. 

4. T H E  P R O P A G A T O R S  

In order to use the approximate kernels g~(z )  and g~(7) for solving the 
kinetic equation (18) for 7(~'), we still need explicit expressions for the propa- 
gators ~ [see Eqs. (69) and (69')]. Though this problem is simpler than the 
calculation of the full Enskog operator of motion (49), it cannot be solved 
exactly either: We only know explicitly a few asymptotic properties, which we 
shall use to guess reasonable interpolation formulas valid for all values of 
y and r. 

To illustrate the procedure, we consider in some detail the case of the 
transverse velocity propagator ~/~,l(Y; "0. The calculations leading to the 
results presented below are often long and tedious; moreover, some of them 
are already available in the literature (see for example Refs. 7 and 13); we 
shall thus not display them here and we shall rather concentrate upon the 
method. 

We start with a dimensional analysis of the problem; to do this, we use 
the decomposition (39) of the Enskog operator. The first term, ik.v2, repre- 
sents free motion, or, in a language which is more appropriate to transport 
theory, it describes kinetic transfer of the molecular properties of the system. 
In dimensionless units, its matrix elements in our basis [n2) [see (44)] can be 
estimated by 

(n2lik.v2-r~ln2') ~ ik(kBT/m)l/2~- E i(yA), all n, n' (80) 

In general, the second term, C; E, which represents the effect of the inter- 
actions, has the simple estimated value 

(n2IC~E-rE[n2 ') ~ 1 (81) 

where the right-hand side represents a function of y which is of order unity 
for all y. However, (81) only holds if n and n' are not any of the conserved 
states (c 0 [see (48)]; due to well-known conservation properties at k = 0, 

~, ~ ~ (1,..., 5); n ~ (1,..., 5) 

this estimate has to be refined when conserved states are involved in the matrix 
element of C; ~. From simple symmetry arguments (see, for example, Ref. 7), 
one finds that some of the matrix elements analogous to (82) for y finite, start 
like y for small y while others start like y~. Neglecting for simplicity these 
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latter terms, which do not affect our present qualitative argument, we have 
thus to keep in mind that some matrix elements of C; E, involving conserved 
states, have the following behavior: 

<a2]C~E ' rE[n2> "-' <n2 lC~F-rEla2> ~ iy if y << 1 

0 if y >> 1 (83) 

a z ( 1  ..... 5); n~(1 .... ,5) 

These matrix elements describe collisional transfer. 
Finally, we should remember that the dimensionless mean free path A 

measures the density of the system: In dilute system, we have A >> 1, while 
dense systems correspond to A << 1. 

With these preliminary remarks, we may distinguish the following 
regimes. 

1. Free motion regime, Ay >> 1. 
Comparing (80) with (81) and (83), we see that free flow dominates the 

effect of the interactions; for all times, the propagator is thus 

~s.• r) -~ <32]exp[ikv2xrEr][32> (84) 

where, for simplicity, we have oriented the vector k along the x axis. A trivial 
integration over velocity leads to 

~s,~(y; ~') - exp[-(YA)%2/21 = ~<O2(Y; r), yA >> 1 (85) 

The last equality in (85), which fixes the unperturbed propagator, is of course 
valid for any (yA). 

Notice that, at low density, this regime covers a very wide range of y 
values (y >> I/A --+ 0), while, at the highest densities, it is only applicable for 
fairly large wave numbers (y >> 1/A >> 1). 

2. Collision-dominated regime, Ay << 1. 
Here, we have to separately consider two regions of time: 

(a) Large times r >> 1. Here, collisions dominate and continuously 
maintain the system in a state of local equilibrium, slightly perturbed by 
kinetic and collisional transfers; the relative importance of these two 
mechanisms depends of course of the density, as measured by A. Here is the 
region where hydrodynamics holds and we may use the well-known formula 
(the superscript h stands for "hydrodynamic") 

g/'2• r) = exp[ -  (yA)2~Er] (86) 

where ~ denotes the dimensionless shear viscosity in the Enskog approxi- 
mation: 

% = ,1Er~./pmaSA 2 (87) 
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This result can be obtained by a straightforward application of the general 
theory of hydrodynamic modes previously developed by Rdsibois ~14>: Starting 
from the Enskog operator (39) and expanding it in powers of k, one may easily 
compute the shear diffusion eigenvalue by a perturbation calculus in k. 

However, for values of y which are not too small (as may occur at the 
highest densities), it is preferable to keep the full y dependence of the colli- 
sional transfer terms (83) and, proceeding in the same way as for the strict 
hydrodynamic regime, one arrives then at the following generalized hydro- 
dynamic,formula 4 : 

~ , h ( y ;  7) = e x p [ -  (yA)2%(y)r] (88) 

where the dimensionless wavenumber-dependent viscosity is given by 

5 [ 
%(y) = ~ _ 1  + 15A ] + 15A 2 (89) 

Here the dimensionless functions )~(y) and K(y) are, respectively, 

A(y) = [(15/y5)(3 sin y - 3y cos y "- y2 sin y)] (90) 

~<(y) = [(30/yS)( - sin y + y cos y) + (10/y~)] (91) 

Since we have K(0) = A(0) = 1, and, of course, % = %(0), it is readily 
checked that, at y = 0, Eq. (89) agrees with the original Enskog results, 
provided it is taken in the zeroth-order Sonine polynomial approximation. 

(b) Small times, r << 1. For such short times, the hydrodynamic regime 
is not yet reached but we may use the short-time expansion 

~/~.l(Y; ,) = 1 + (321(ikv2x + C'-E~)132)rE~ - 

+ (32I(ikv2~ + c~)~13~)(~-~,~-)2/2! +...  (92) 

Except for the amount of labor, there is no particular difficulty in 
evaluating the matrix elements involved in this formula, provided the second- 
order term is calculated again within the zeroth-order Sonine polynomial 
approximation; the result is 

Y Y )  2 ~ , •  7 ) =  1 Y54Y)l~ r - 1 + 15A ] 2 - ~ S 5 )  (yA) ~ + "  

(93) 

Though it is difficult to say anything rigorous about the convergence of this 
series, one sees that the terms of order r [remember ~(y) -+ 0 for y >> 1] and 
r 2 are small in the regime ~- << 1 and (Ay) << 1, an indication that (93) can be 
safely used in this regime. 

4 A similar calculation of y-dependent transport coefficients was presented, in a very 
different context, in Ref. 15. 
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An important feature of this result is the presence of a term of order r : 
it describes the well-known purely collisional transfer effect, <8,16~ which, due 
to the instantaneous character of the collisions, starts right away at time 
r = 0. As shown by Wainwright, (16~ this corresponds to a delta-function 
singularity in the Green-Kubo integrand associated with shear viscosity. 

We now propose an interpolation formula which smoothly fits these 
various limiting regimes; we write, for all y and r, 

~ , •  r) = {exp[-(~r)2]Y/',~• r) + {1 - exp[-(c~r)2]}~f~g~(y; r) (94) 

Here, ~s,~ has been defined in (88) and ~//~, is given by 

• r) = exp -rYeS) ~.1-3-X5- + 1 + 15A ] (95) 

Moreover, ~ is a constant parameter, of order unity, which ensures the 
transition between the regions r >> 1 and -r << 1. 

Notice that for yA >> 1 and r >> 1, Eq. (94) leads to 

~ , •  r) ~ exp[- �88 yA >> 1, r >> 1 (96) 

which is different from the exact result (85). However, since in this regime 
both formulas tell us that ~t~.s(Y; r) ~_ O, this difference is irrelevant. 

The same method may be applied to the other propagators; in the 
example of self-diffusion, the situation is particularly simple because there 
is no collisional transfer (the particle number is conserved by ~' C,,1) and the 
three limiting cases are as follows. 

1. y A > > l  

~/~:I,z(Y; r) ~ exp[-(yA)%2/2] = ~/#~~ r) (97) 

where, again, the last equality holds for arbitrary (yA). 

2a. yA<< 1, r>> 1: 

~,~o,~ ,s;~,~y; r) _ exp[ - (ya)2 /3~r]  (98) 

where the dimensionless diffusion coefficient is simply 

O~ = D~rE/aZa 2 = } (99) 

2b. yA << 1, r << 1: 

~/4;~,~(y; r) __ 1 - �89 2 +.. .  (100) 

From these results, we propose the interpolation formula 

~";a.z(Y; r) --- {exp[-(~r)=]}~/;~(~ r) + {1 - exp[-(~_)2]} 

x Y/~;g~z(Y; r) (101) 
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Similar equations have been obtained for the density and the longitudinal 
velocity propagators; since these formulas are rather elaborate but involve no 
new principle, we present them in Appendix C. We close this section with a 
few remarks. 

(i) The extrapolation formulas we have proposed here are rather in- 
volved and, moreover, they are certainly not the only ones which have (or 
will be) suggested. In particular, for self-diffusion, it is common practice to 
use, instead of (101), the more compact expression based on the well-known 
Gaussian approximation (17> 

~'~:~,~(y;.r) = exp[-(yA)2 f~ (r - "/)exp(-2-r'/3)dx '] (102) 

which also satisfies the asymptotic properties (97), (98), and (100). The 
undoubted superiority of (102) over (101) is that it involves no adjustable 
parameter. However, the generalization of a formula of the type (102) to 
the propagators ~/r~.l and ~/~LH,IL is very difficult: The complicated coupling of 
density, longitudinal velocity, and kinetic energy (which, in the long term, 
leads to the sound and entropy modes) makes it very hard to write down a 
compact formula which holds for times both short and long. On the contrary, 
our representation can easily be written down for these propagators also, as 
can be seen in Appendix C. Moreover, by choosing ~ once for all, indepen- 
dently of the density, we minimize the freedom it offers; we have adopted the 
value ~ = �89 but changing it by a factor of 2 does not affect qualitatively our 
results. This value of ~ = �89 is very reasonable in view of our above discussion. 

(ii) Though our interpolation formulas are rather involved, they are 
very convenient in numerical calculations and moreover they become 
extremely simple in the two regions ~->> 1 and r << 1, where analytical 
calculations are feasible. 

(iii) An important feature of "f-•177 already noticed following (93) (and 
which also applies to ~/~l, n), is the presence of collisional transfer terms, which 
lead to a rapid decay of this propagator for short times. To be more precise, 
consider first the self-diffusion propagator ~ .1  1, where no collision t~ansfer 
mechanism occurs; from (101) and (97), we reaclily verify that, for all y~and ~-, 

~;1,1(Y; ~) >/ ~/~o!(y; ~.) (103) 

This equation expresses the obvious fact that diffusion of a tagged particle 
is always slower in the presence of interactions than with free motion. The 
same is true for ~,•  in the dilute gas limit: 

~ , . ( y ;  ~) /> ~2~ ~), A -+ ~o (104) 
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but, if we compare ,"U• and ~/:~~ 2 in general, we find that for short wave 
numbers y <<. 1 and for  times .: <<. 1/A (which may be quite long for high 
density systems), we have 

~:~,• ~) < ~<?2(y; ~), y ~< ], ~ <. 1/A (105) 

Here, collision transfer is an extremely efficient mechanism to damp a 
velocity fluctuation: It is even more efficient than free motion ! This point will 
be extremely important in interpreting the results of the next section; it was 
completely overlooked in the approximation for the propagators proposed 
by Mazenko uS> and is at the origin of the failure of his theory at high density. 

5. R E S U L T S  A N D  D I S C U S S I O N  

We have numerically computed our approximate kernel gqh(r) [see (68), 
(69), and (69')] at various densities with the help of the formulas for the 
propagators given in Section 4 and in Appendix C. A further integration over 
time leads, then, with the help of (19), to the result displayed in Fig. 2 for the 
ratio D/D~ (solid curve). This curve is to be compared with the data of 
Aider and co-workers, extrapolated to an infinite number of particles 
(dashed curve). <~ We observe that, at low density (V/Vo >>. 7), the agreement 
is quite good: The discrepancy is of the order expected by the use of the 
zeroth-order Sonine approximation; at intermediate densities (2 ~< V/Vo <~ 7) 
the theory is still qualitatively correct, although the enhancement of D is 
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Fig. 2. The ratio D/DE as a function of V/Vo. ( ) Present theory; (-.-) Alder and 
co-workers (extrapolated); ( - - - )  Present theory corrected for long times [see (123)]. 
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significantly too small; finally, at the highest densities (1.5 ~< V/Vo <~ 2), we 
see that the ratio D/DE becomes smaller than unity, a nontrivial feature which 
:is clearly exhibited in the computer experiments. We shall come back to the 
:interpretation of this result below. 

A more severe test of the theory is provided by the analysis of the time- 
dependent correlation function ~,(~-) itself. In order to do this, we have 
numerically solved the kinetic equation (18) and from this, we have computed 
the deviation from the Enskog theory: 

3~,(~-) = y(~-) - yE(7) (t06) 

where ),~(r) is the exponential Enskog prediction, exp(-2r/3).  
To illustrate these results, in Fig. 3 we have plotted 37(7 ) from the 

present theory (solid curve) together with the Alder results (dashed curves) 
at the two characteristic densities V/V0 = 5.0 and V/V0 = 1.6. 

Although it is difficult to make a detailed comparison with the computer 
results, because these are rather sensitive to the total number N of particles 
taken in the calculation, (a,19~ we see that the following qualitative features are 
well reproduced by the theory. 

1. The deviation 87,(~-) is the largest for times larger than I, and the 
position of this maximum is shifted toward larger times when the density is 
increased. 

2. The value of 8?,(~-) at this maximum is strongly density dependent; 
in particular, it becomes negative at the highest densities, a property which 
implies the negative deviation of the diffusion coefficient from its Enskog 
value already shown in Fig. 1. 

Moreover, Fig. 2 shows that the theory is in default in two respects: 
3. It leads to a too positive ~,(r) at short times; in particular, the 

positive bump we obtain for V/Vo = 1.6 is absent in the computer calcula- 
tions. 

4. It leads to a too rapid decay of 8~,(~-) for large times. 

Despite the fact that very little analytic information can be extracted 
from our expressions (69) and (69'), we shall see now that these four features 
can be understood, by a close inspection of these formulas, without any 
numerical calculation. Our discussion will also indicate the way to remedy the 
main defects of the present theory. 

1. We first notice that the characteristic decay time of the kernel g(r) 
[and thus also that of 3~,(r)] is governed by the corresponding time for the 
propagators ~ .~ (y ;  ~-) for some value y* where the integrands y2cpll(y), 
y2q~• and y4r [see (69) and (69')] have their maxima. These 
quantities are only weakly density dependent and their maxima occur for a 
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Fig. 3. The deviation of the velocity autocorrelation function from its Enskog value at 
the densities V/Vo = 5.0 and V/Vo = 1.6, respectively. ( ) Present theory; (-- -) Alder 
and co-workers. 

value y* ~ 1. Fo r  such y*, the propaga tors  are characterized by a decay time 
r which we may  estimate as [see, for example,  (88)] 

r~eloc l/A2-->0 for l~/Vo--~oo 

r~elocl for V/Vo ~ 1 
(lo7) 

This shows that  the m a x i m u m  of  ay(r) does indeed shift toward larger times 
as V/Vo decreases. (We are of  course unable  to locate precisely this maximum,)  

2. The  low-density result [see (103) and (104)] 

~/fi.l(Y; r)Y/~s:l,z(Y; r) >~ -fF(O~(y; r)~s~o~l(y; r), V/Vo --> oo (t08) 
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indicates that all contributions to g(T) are positive at low densities, 5 leading in 
turn to a positive 87(7 ). On the contrary, the mechanism discussed in (105) 
allows g~(r )  to become negative at the highest densities. Since this latter 
term itself dominates g~(~) [see (109) and (110) below], we see that collisional 
transfer is responsible for the negative deviation ~7(~-) in this high-density 
region; this observation is confirmed by the fact that these negative contribu- 
tions start to appear for V/Vo <~ 2.0, where collisional transfer is well known 
to dominate transport phenomena. 

As far as we know, this mechanism was not fully understood previously, 
except by the rather vague concept of "backward scattering," (8) which was 
difficult to define because, as was lucidly pointed out by Alder and co-workers, 
it was describing a collective effect, which can now be pointed out precisely. 

3. Though the present theory was initially devised to give a correct short- 
time behavior of the correlation function 7(~-), the fairly important dis- 
crepancy between our calculation and the computer results in this time regime 
is not really surprising. Indeed, this correct behavior was lost when we 
replaced our "exact"  kernel g(~-) by its quasihydrodynamic approximation 
gq~('~). As was pointed out above, the difference [g(0) - gq~(0)] is fairly large 
and the same presumably remains true for ~- ~< 1: We can expect that this 
difference is at the origin of the difficulty. Yet, we have not found any simple 
convincing way to restore this short-time behavior; as a matter of fact, it is 
probably in this problem that the use of kinetic models will bring the most 
spectacular improvement over our rough theory, because it will automatically 
incorporate the correct short-time behavior. We shall not dwell upon this 
point any further here, except to note that rough estimates indicate that the 
results found above for the diffusion coefficient are only little affected by these 
short-time errors. 

4. Let us now come to the long-time behavior predicted by this theory. 
For ~- --~ oo, it is readily seen from (69') that the contribution g~(r )  takes the 
form 

g~( , )  oc y4dyexp[-(yA)2,~(A)~-] oc 1/~ -5/2 (109) 

(the function ~(A) need not be specified here); it is dominated by g~(~), 
which takes the form 

f; g(q~(-r) oc y2 dy exp[-(yA)2~(A)r] oc 1/~- 3/2 (ll0) 

It is quite easy to get the precise asymptotic behavior of g(q~(r); with the help 
of (88) and (98), we get indeed 

g~(~) ~o~ \31 3,~A 2 \ ~ ]  ( I l l )  

We neglect here the oscillating contributions from the sound waves, which are rapidly 
damped anyway. 
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where the coefficient/3(A) is defined by 

/3(A)= + ~ + j ,  1 + 1 5 A ]  (112) 

Thus, as already announced in I, the kernel of our non-Markovian 
kinetic equation finally decays to zero as a r-a/2 power law, with a positive 
defined coefficient. Formula (1 l 1) does not tell us, however, how long we have 
to wait before it becomes valid; the numerical calculation of gqh(r) shows us, 
for example, that, for V/Vo = 5.0, the asymptotic value (111) is reached 
within 1/104 for times r > 17; yet, at the highest density (V/Vo = 1.6), 
gqh(r) is still negative up to times r > 80, though we can check that it will 
finally end up with the correct asymptotic behavior (111)! 

The asymptotic formula (111) generates a similar long-time tail for the 
velocity correlation function itself; the simplest procedure to get it is to define 
the Laplace transform of the kernel 

gq~(s) = e-Stgq,~(r) dr (113) 

and a similar expression for p(s). One gets then from (18) 

p(s) = 1/[s + } - gq~(s)] (114) 

which, for small s, can be expanded as 

1 ( 1 )~_ 
9(s) - ~ _ &~(o) + } - )q~(o) [g~.(s) - &~(o)l + O(s) (115) 

With the help of (19), we have then from known asymptotic theorems ~~ 

(_~_D ] 2 1 1 (116) 
~v(~) ~ -  \,-,E/ 3 ,~A~ [~(A)~] ~ 

Incidentally, note that (116) can also be written formally as 

s 3y(r) _~ dr' dr" { exp[ -  D(r - r')]}gq~(r' -- r") e x p ( -  Dr") (117) 

which has a very intuitive meaning: The long-time decay of av(r) can be 
described as the exponential decay of the initial perturbation with the exact 
transport coefficient D, perturbed by the small memory effect of the non- 
Markovian kernel. 

Equation (116) has to be compared with what is believed to be the correct 
asymptotic behavior of the velocity correlation function ~4~ 

2 
r(t)[ . . . .  t -~ (118) t ~  3[&r(D + v/nm)t] 3/2 
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If we insert in (118) the transport coefficients D and ~ in the Enskog 
approximation, we get the following approximate result: 

8y(r)[E~keg ~ g2(a+) 1 (119) 
,~--~ 3~a~ [5 (A) ,F  ~ 

which is, in our reduced units, the result obtained by Dorfman and Cohen ~21) 
by summing the ring graphs: It is known to fit quite well the computer data 
for ~- - - >  00. (19) 

The difference between (116) and (119), which was already noticed by 
Mazenko, (~a) can be interpreted as follows: 

(i) The extra factor (D/DE) 2 in (116) can be traced back in (117); indeed, 
this factor would not appear if we had written instead 

87(r ) m dr' dr" {exp[-  DE(r -- r')]}gq,(r' -- r") e x p ( -  DEr") 
7; ~ oa 0 

(120) 

with an "unper turbed"  Enskog transport coefficient in the exponential decay. 
Similarly, no such factor appears in the (formally) exact theory(23~; here 

one has 

3y(r) _~ dr' dr" {exp[-  D(r - r')]}gren(r ' - r") e x p ( -  Dr") 
~ o o  

(121) 

Here the "renormal ized" kernel gren involves the full transport coefficient D: 

gren(r) = (D~/D)2gqh(r) (122) 

Yet, in any perturbative kind of approach, it is difficult to write down a 
consistent approximation of the type sketched either in (120) or in (121): 
While the kernel gqh(r) modifies the transport coefficient from its Enskog 
value to its "cor rec t "  value D, it does not "renormalize itself" and leads 
thus to the unsymmetric expression (116). In their dense fluid calculation, 
Dorfman and Cohen ~21~ avoided this factor (D/D~) 2 by using an approxi- 
mation equivalent to (120). 

(ii) The factor g~(a§ missing in (116), as compared to (1t9), is numeri- 
cally important at high density and, as we shall see later, it is presumably 
at the origin of our too small values for the ratio shown in Fig. 2. To under- 
stand why this factor is lacking, let us go back to our original expression (21) 
for the kernel g(1)(r) : We see that one factor g2(rl, r2) appears at time r = 0, 
when particles 1 and 2 first interact, but, at later times, these two particles are 
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taken as completely uncorrelated/As was shown in I (Appendix D), this is 
all right for short times (i.e., including three-body effects): Then, the single 
pair correlation function g2(rl, r2) does the job of preventing any unphysical 
recollision process between particles 1 and 2. However, if we consider a 
dynamical process where particles 1 and 2 first become greatly separated and 
then come back to collide with each other--to make up a so-called " r ing"  
event--it is clear that the description offered by (21) is unsatisfactory: This 
recollision process does not take place in the vacuum but rather in a dense 
medium where all other particles are at equilibrium. Hence, arguing as 
Enskog originally did, we would expect that gqh(~-) should be replaced by 

gCOrr(~.) = g2(a+)gq~('c) (123) 
z ~ c o  

where this extra factor g2(a+) precisely accounts for the geometrical effect 
due to the other particles in the medium. 

As was already pointed out by Mazenko in a rather different for- 
realism, (24~ it is quite difficult to devise a reasonable theory which would 
give (31) for short times and would gradually lead to (123) when time 
increases: How to do this seems the most puzzling challenge in dense hard- 
sphere dynamics. Of course, if one is only interested in the long-time behavior 
of 7(~-), there is no special difficulty in picking up a special class of graphs 
leading to the asymptotic behavior (123), as was done by Dorfman and 
Cohen. It remains, however, an open problem to treat such a class of graphs 
consistently, and explicitly, for all times. 

In order to check whether a modification of the type indicated in (123) 
could account for the high-density deviations between our theoretical value 
for D/DE and those obtained by Alder and co-workers, we have computed 
this ratio from (28) by assuming (123) to be valid for all times. The hypothesis 
here is that the main contributions to D come from times large enough so that 
(123) is valid. The result is reported in Fig. 2 (dotted curve) and shows almost 
quantitative agreement with the computer data; the corresponding data for 
bT(r) are, however, very poor at short times, as could be expected, and will 
not be displayed here. 

The main conclusions of this work can be summarized in three points: 
First, the quasihydrodynamic approximation to the kinetic equation of 
Rdsibois and Lebowitz, Eq. (1), gives the correct qualitative features of the 
velocity autocorrelation function in dense hard-sphere fluids; in particular, 
the collective nature of the dominant effects, first pointed out by Alder and 
co-workers, is nicely exhibited: These dominant effects all appear as precursors, 

6 As  a matter o f  fact, our approximat ion  is such that the t ime-dependent  pair correlat ion 
S(~)(ri ; vl ; r2; v2 ; r) [see (32)] even generally does  not  vanish inside the unphysical  region 

In  - r2] < a. 
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for shorter times, of the now well-established power-law long-time tails, 
including at the highest densities. 

Second, this quasihydrodynamic approximation is rather unsuccessful 
for short times but this does not disprove the validity of the kinetic equation 
(1), which has been constructed in such a way that this regime is in principle 
exactly described: It rather indicates the need for a more sophisticated solution 
of this equation, in particular through the use of kinetic models. 

Third, the theory seems basically incorrect for long times at the highest 
densities; the important unsolved problem remains to write down an explicit 
and manageable kinetic equation which would incorporate the modification 
suggested by (123) for long times, while reducing to the present approximation 
in the short-time limit. We hope to come back to this point in later work. 

A P P E N D I X  A. C A L C U L A T I O N  OF 0(2)(0) 

With the explicit formula I (40) for/(12, we may rewrite Eq. (21) for 
~- = 0 a s  

~(2)(O) = (m,~2a~/k~T) f dv~ f dv2 f d~x v~x(X.v~)O(x.v~2) 

• [S(2)(rl, vl'; rl - ax, v2'; 0) - S(2~(rl, v~; rl + ax, v2; 0)] 

(A.1) 
where 

S(2)(rl, vl; r2, v2; O) 

= a2p2 f dr3 dv3 f d2x' (x'. - v13) 

x O(x'.vl3) ~(r13 - ax'){ga(rl, r2, ra) - g2(rl, r2)g2(rl, ra)} 

x ( v l x  - vlx)~(vl)~(v2)~(v3) ( A . 2 )  

Let us recall that v~' and v2' denote the velocities after the collision: 

vl' = vl - (• v2' = v2 + (x'v12)• (A.3) 

In the term of (A.1) involving S<2~(r~, v / ;  r~ - a• v2'), we use v /  and 
v2' as new integration variables and replace • by • = - x .  With the help of 
(A.3) and (7), we then readily get 

~,(2)(0) = ~ d2• d2x ' (x ,~ g2(a+)2 1 *(x, x') (A.4) 

where the function ~(x, • is defined by 

• = (m/kBT) 2 f dr1 dr2 dv3 (• ~(• 

x (x'.v~)~o(• (A.5) 
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We then notice that ~,  being a scalar, can only depend on • and x'  through 
their scalar product :  

�9 (x, • = ~ ( x . x ' )  (A.6) 

and this allows us to reduce (A.4) to (26) with x = x .x ' .  We are thus left with 
the p roo f  that (A.5) can be reduced to (28); the steps of  this calculation are: 

(i) Use g2 = v2 - vl and g3 = va - vl instead of  v2 and va as integration 
variables and perform the vl integral. The result is 

(m/kBTy f q3(x) = (2~rkBT/m)333i 2 dg2 dg3 (x'g2)20(~'g2) 

[ m ( g 2 2 + g a ~ - g 2 " g 3 )  l (A.7) x (x ' .  ga)20(• ' .  ga) exp 3-Es 

(ii) Suppose x # + x'  (the case x ~ _+ • follows by continuity);  choose 
the z axis for  g~ and g3 perpendicular to the (x, • plane: The g2~ and ga~ 
integrals are readily performed:  

(talker) ~ l" 
�9 (x) - (2~kBT/m)2/3)  d2g2jr d2gal (x.gzll)20(• 

exp[  m(g~,, + g~,,-_ g2,,'g~,,)] (• TE~T �9 (A.8) X 

L 

where g211 and g311 are two-dimensional vectors lying in the (• x') plane. 
(iii) Decompose  g, ll (i = 2, 3) according to 

g211 = u2• + w2x• g3n = uax' + w3x• (A,9) 

where x• and x• are perpendicular  to x and • respectively. Again, the w2 
and wa integrals are easy to evaluate and we get 

l (m/k~T)a fo= fo" q)(x) = 2~" (4 - x2) ~12 du2 du~ u2~ua 2 

exp[  m(u~ ~ + u32 - xu2ua)] X ! j 

C C = 1 (4 - x~) sz2 y2dy z~dz e x p [ - ( y  2 + z 2 - xyz)] (A.10) 
2rr 

(iv) Use polar coordinates (r, 0) in the 0 ' ,  z) plane and perform the r 
integral: 

(4 - x2W ~ f'~/~ dq~' sin 2 qb' q~(x) 8~r ~o (1 - i x  sin q),)3 (A.11) 

where 4)' = 20. 
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(v) Performing the remaining elementary integral over qb', we arrive at 
Eq. (28). 

APPENDIX B. CALCULATION OF hx(k), nx(k), mx~(k) 

We rewrite (67) as 

= f drz2exp(-ik.rz2)f d2• K,/{gs(rl, r2, h -  a• ~x(k) 

- gz(h, r2)g2(a +)}f(x') (B. 1) 

f(•  = f d h  dvs (x' .vzs)20(• ' .hs)q~(h)~o(va) (B.2) 

The scalar f(• is readily evaluated <~~ to be 

f(• = kBT/m (B.3) 

Moreover, from the second BBGKY equilibrium hierarchy equation, we get 

f d2• ' K~'{ga(rl, - - gz(h,  r2)g2(a+)} aN') r2, rl 

1 
= - -  a [g~([r[) - g~(a+)O(lr I - a)] (B.4) asp 

where 

We obtain 

i(ka)g2(aa3p +) k~Tm [g2(a+) [ G(ka) 4~r J] ~:~(k) 4- 3 p(ka) lk,~ (B.5) 

where G(y) and fi(y) are respectively defined in (43) and (75). 
Similarly, one finds 

nx(k) = 4~i(ak) kBT - -  fi(ka)lk,x (B.6) 
3 m 

and 

mxx(k)= k~T8~/~r['~m 3 + 1~'x3i3-i212 

where i2 and i3 are defined by (74). 

(B.7) 

A P P E N D I X  C. D E N S I T Y  A N D  L O N G I T U D I N A L  VELOCITY  
P R O P A G A T O R S  

The results are as follows. 

1. Ay>> 1: 

~r ~') -~ exp[-(YA)2~-2/2] = ~(,O~(y; ~.) (c.1) 
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and 

and 

~,H.I,(Y; r) ___ [1 - (yA)2r 21 exp[-(yA)2r2/2] = ~/~.,~O~(y; ~.) 

2a. Ay<< 1; ~->> 1: 

~,,gh,l,~ty; ~-)=Ic--~C~ cos[c(y)Ayz]exp[_(yA)2f,(y)~.] 

+ (1 c~y))exp c - ~  J 

(c.2) 

(c.3) 

g h  ~/~ll.ij (Y; ~-) = cos[c(y)Ayz] e x p [ -  (yA)21~,(y)r] (CA) 

Here C~(y), c(y), FE(Y), and fiE(Y) represent, respectively, generalized 
specific heat at constant  pressure, sound velocity, sound damping coefficient, 
and thermal conductivity, all expressed in dimensionless units: 

3 [1 + ~,7~#(y)/6A] 2 (C.5) 
Cp(y) = -~ + 1 - aaoC(y) 

[see (42) and (43)] 

c~(y) = (1 - aapE(y)]C~(y)/C~ (C.6) 

~ O ( y ) ] Z  t~(Y) 1 ( 1  Cp(y))  y~(y)]  (C-7) 

7,( 
~ ( y ) = ~  1+  + 6 A  ~ 

Here the following functions have been introduced'  

O(y) = (15/2y2)(-y 3 cos y + 4y 2 sin y + 9y cos y - 9 sin y) (C.9) 

~(y)  = (6/y2)[1 - (sin y/y)] (C.t0) 

~ (y )  = [(10/3y 2) - (lO/y~)(y 2 sin y + 2y cos y - 2 sin y)]  (C,1t) 

Moreover,  C~ 3 
- -  2 "  

Since 0(0) = ~-(0) = tz(0) = 1, it is readily verified that, at y = 0, 
Eqs. (C,3) and (C.4) are consistent with Enskog transport  theory and with 
the thermodynamic requirements for a hard-sphere fluid. 

2b. yA<< 1, z<< 1" 

~ , I ( Y ;  r) = 1 - (yA)Zr=/2 +... (C,12) 

y 2/~(y)] (yAz)Z 
~ .~ (y ;0  = 1 ~(Y)" 3~(y) +... (c.13) 5 25A 2 ] 2 
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where we have put  

U~(y) = �89 + 4{1 + [a/~O(y)/15A]} 2 (C.14) 

On the basis of  these results,  we p ropose  the fol lowing ex t rapo la t ion  
fo rmulas :  

~ , I ( Y ;  ~) = {exp[-(~r162176 ~) + {1 - exp[ - (~ r )2 ]}~g ,~ (y ;  ~) (C.15) 

and  

~ , l l ( Y ;  r)  = (exp[- (~r )2]}~,~(Y;  7) + {1 - exp [ - (~ r  7) (C.16) 

where  

~,,~ " exp[  (yA~2(  \ - ~ - ~ -  + - , , , , , ( y ,  [ ,  _ - (C.17) 
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